

Energy (part 1)

Content development led by HfWU Nürtingen-Geislingen:

Dr. Dorothee Apfel
Dorothee.Apfel@hfwu.de

#1 Energy a cross-cutting topic

Interactions btw. SDG 7 "Energy" and the non energy SDGs

Sustainable Development Goals

- 1 No Poverty
- 2 Zero Hunger
- 3 Good Health and Well-being
- 4 Quality Education
- 5 Gender Equality
- 6 Clean Water and Sanitation
- 7 Affordable and Clean Energy
- 8 Decent Work and Economic Growth
- 9 Industry, Innovation and Infrastructure
- 10 Reduced Inequalities
- 11 Sustainable Cities and Communities
- 12 Responsible Consumption and Production
- 13 Climate Action
- 14 Life below Water
- 15 Life on Land
- 16 Peace, Justice and Strong Institutions
- 17 Partnerships for the Goals

#2 Energy Landscapes – a relevant topic!

Energy landscapes ... yesterday

© muehle-walbeck.de

© Landesforsten.RLP.de

© ekosystem-erde.de

Energy landscapes ... yesterday (?)

© geo.de

Energy landscapes ... today

© tz.de

© swtue.de

© mwm.net

Energy landscapes ... tomorrow

© thb.info

© ise.fraunhofer.de

© baywa-re.com

#3 Energy Policy

Landscape matters!

 EU energy targets and the economic crisis has affected the commitment to energy transition based on renewable resources

→ 2020: 20% share for renewable energy
 → 2030: 32% share for renewable energy

→ 2050: first climate neutral continent

- Urbanization and vast energy consumption of cities challenge environmental designers to envision urban landscapes with sustainable energy systems.
- Historical chance to re-invent urban-rural relationships that enable higher-density energy landscapes while addressing socio-economic challenges in rural areas

Landscape matters!

- RE sources **change the land use** (decentralized energy system), which raises the question of an integrative spatial policy.
- The discourse on energy landscapes evolves around a triplex: Ethical considerations, aesthetical challenges and planning/design questions.
- The relationship between renewable energy and space needs an energy-conscious organization of the physical environment→ planning and design of sustainable energy landscapes.

#4 Impacts of Renewables

Bioenergy

Roth et al. 2018

Direct landscape impacts:

- Visual impacts on landscape and land use change (monocultures)
- Pre-existing agricultural activity is converted into new, often more intensive forms of agriculture
- Scale-dependent impact of processing facilities
- Trend to large industrial scale

Indirect landscape impacts:

- Effects on soil, gaseous emissions, water contamination, unfamiliar smells
- Changes in the ecosystem, altering flora and fauna, loss of biodiversity
- Intervisibility: from low-height crops to aboveeye-height crops
- Increased traffic of biomass transport

Bioenergy

Roth et al. 2018

Mitigation strategies:

- Close-loop biorefineries limit land-use impacts
- Usage of wider range of substrates, e.g. domestic, economic and forest waste, residues
- Production of energy crops on marginal or abandoned land

Potential positive impacts:

- Use of waste → circular economy
- Local fertilizers (fermentation residues)

© nadu-naturduenger.de

Geothermal Energy

Roth et al. 201

Direct landscape impacts:

- Geothermal infrastructure development (drilling of wells, spread with km distances, access roads, pipelines)
- Industrial looking generation stations (steam operators, cooling towers, pipes, generator buildings)

Indirect landscape impacts:

- Hillside stability and landslides (thermal changes in the soil)
- Subsidence of land (extraction of fluids)
- Earthquakes (reinjection)
- Change/disappearance of hot springs, fumaroles

Geothermal Energy

Roth et al. 201

Mitigation strategies:

- Reclamation of destroyed vegetation (with local species)
- Smart drilling, underground pipelines, colors that harmonise well with the landscape, design of inconspicuous buildings

Potential positive impacts:

- ... Hard to envisage
- Blue Lagoon Spa, Iceland
 → attraction in spill water of geothermal power station

Hydro Energy

Roth et al. 2018

Direct landscape impacts:

- Large facilities (power stations, damming rivers, artificial reservoirs, pipes, transmission lines) → presence of structures constitutes substantial change in landscape features
- Small facilities: run-of-the river (canal or pipe which spins turbines) → less impact, still infrastructure above surface
- Underground impacts by pipes, turbines, pumps
- Flooding of villages

Indirect landscape impacts:

- Building of reservoirs might dry up large watercourses
- Damming of lakes and rivers: erosion of the shoreline
- Riverbank erosion downstream of power plants
- Rapid flow: drastic changes in water-related ecosystems (physical and chemical qualities)

Hydro Energy

Roth et al. 2018

Mitigation strategies:

- Use of existing infrastructure
- Use of existing lake reservoirs
- Depending on the original state of the landscape and cultural value: artificial lakes are often perceived as attractive
- Power stations and power lines are considered disturbing: underground solutions
- Simple solutions like fish-ladders

Potential positive impacts:

 Major regional attractions → boost for tourism and local income

© suedtirolerland.it

© schwarzwald-tourismus.info

Wind Energy

Roth et al. 2018

Direct landscape impacts:

- Great height → prominent visual impact
- Varying scale of windfarms: single pylons to 20-30
- Development of infrastructure: roads, transmission lines, buildings, night lights, shadow flicker etc.
- Appearance depends on position of wind turbines, landscape type, wind turbine size, proximity to wind turbines
- Change of landscape character esp. in coastal zones and mountain ridges

Indirect landscape impacts:

- Hazards to birds and bats, noise pollution and destruction and degradation of habitats
- Underground and surface waters
- Coastal erosion

Wind Energy

Roth et al. 2018

Mitigation strategies:

- Landscapes with technical installations can assimilate easier → existing association with industrial structures or infrastructure
- Avoid visibility from sensitive viewpoints
- Location and design aligned to surrounding landscape
- No single-color

Potential positive impacts:

- Contrary to emotional conflicts about wind farms, they can facilitate local identities (technological efficiency, progress, climate friendly, utility)
- Coastal zones: new source of income generation, new habitat development (reduced pressure from shipping)
- Symbol of energy transition

Solar Energy

Roth et al. 2018

Direct landscape impacts:

- Large-scale PV on ground: land use, biodiversity, water-related aspects, visualaesthetic, glare
- Concentrated solar thermal: glare effect from mirrors, visual impact of tall cooling towers, water management

©renewableenergymagazine.com

Solar Energy

Roth et al. 2018

Mitigation strategies:

- Appropriate sitting (former mines, industrial areas, sites with low visibility)
- Integration into buildings
- Dual use of land
- Appropriate design

Potential positive impacts:

- Co-existence with agriculture and grazing (increase of crop production)
- Structures of PV as land stabilisation
- PV as spatial definition of certain areas (public area, bike lane, etc.)
- PV panels for shade

© pv-magazine.cor

#5 Interim Summary

Planning matters!

- Energy production and consumption are closely liked with landscape
- Renewables also have impacts on landscapes
- Landscapes are spaces of impact and action at the same time
- Landscape planning on all levels can contribute to
 - minimization and mitigation of landscape impacts
 - transparency and accountability in all decisions
 - achieving social acceptance
- Landscape planning and design have influence, but cannot achieve energy transition without stakeholder collaboration
- Interdisciplinary understanding and cooperation is necessary
- Thinking in multifunctional synergies when developing and accompanying energy projects

References

THANK YOU

→Prof. Andreucci continuous with Positive Energy Districts

kWh/m²

Electricity for 1 million households, spatial footprint

Solar © Stremke et al. 2022 Wind © Stremke et al. 2022 Hydro © Stremke et al. 2022

$\pmb{\text{Heat}} \text{ for 1 million households, spatial footprint}$

Geothermal © Stremke et al. 2022

Bioenergy © Stremke et al. 2022