

Example: THE SIERRA CALDERONA STRATEGIC PLAN (Galan, 2013)

REGIONAL STRATEGIES (5 SPECIFIC FOR METABOLISMS)

SUSTAINABLE TRANSITION TOOLS FOR THAT?

Example: THE SIERRA CALDERONA STRATEGIC PLAN (Galan, 2013)

A VISION: A REGIONAL METABOLIC MODEL: CURRENT & FUTURE

Source: "Plan Territorial Estratégico Sierra Calderona », Galan (2013)

Example: THE SIERRA CALDERONA STRATEGIC PLAN (Galan, 2013)

Main internal road

Green axes

Green areas

Secondary internal streets

TOOLS: LAND-USE PLAN + SECTORAL PLANS + PILOT PROJECTS

	CARBON FOOTPRINT	FOOD FOOTPRINT	LODGING FOOTPRINT	SERVICES FOOTPRINT	TOTAL FOOTPRINT	Number of Earths
PERMANENT RESIDENT WORKING IN THE AREA (CURRENT)	17.1	19.5	4.5	10.6	51.7	3.29
PERMANENT RESIDENT WORKING IN THE AREA (AFTER PROPOSAL)	4.9	16.5	4	7.5	32.9	2.09
RETIRED RESIDENT (CURRENT)	15.2	17	3.2	6.6	42	2.67
RETIRED RESIDENT (AFTER PROPOSAL)	4.9	12.4	4.5	9.1	30.9	1.97
CHILDREN RESIDENT (CURRENT)	17.4	19.5	7.4	12	56.3	3.58
CHILDREN RESIDENT (AFTER PROPOSAL)	5.7	16.5	3.4	11.6	27.2	2.37
SEASONAL RESIDENT (CURRENT)	22.8	19.5	6.5	12	60.8	3.87
SEASONAL RESIDENT (AFTER PROPOSAL)	7.5	16.5	3.2	11.6	38.8	2.47

4c. Some examples LANDSCAPES OF PRODUCTION (studio course, Aalto University)

STUDIO COURSE: 'LANDSCAPES

Student: Rosaliina Luminiitty

OF PRODUCTION' (Aalto

Teacher: Juanjo Galán)

University, 2018)

of Valencia)

2 UUSIMAA 3 PERI-URBAN

PRODUCTION

BIODIVERSITY

CLIMATE CHANGE (\$)

€RISTO THE FARMER

1 FINLAND

2 UUSIMAA

AGRICULTURE

3 PERI-URBAN

PROCESS

PERI-URBAN NOW

FOOD BICMASIS BINEHOY

ECOSYSTEM SERVICES

FOREST INDUSTRY PRODUCTION

SUCCESSION ECOSYSTEM SERVICES 3° III ()

Ashto University
School of Arts, Design MAR-E1034 LANDSCAPES OF PRODUCTION: THE PERIURBAN COLLAGE
and Architecture

STAFF TRAINING SEMINAR TELOS project (Rome, Italy, 11-13 July 2022) STUDIO COURSE: 'LANDSCAPES OF PRODUCTION' (Aalto University, 2018)

Student: Rosaliina Luminiitty Teacher: Juanjo Galán)

STAFF TRAINING SEMINAR
TELOS project
(Rome, Italy, 11-13 July 2022)

AGRICULTURE

SPECULATIONS OF FUTUR

AGRICULTURE

SPECULATIONS OF FUTU

3/4

Aalto University
School of Arts, Design MAR-E1034 LANDSCAPES OF PRODUCTION: THE PERIURBAN COLLAGE
and Architecture

ECOSYSTEM SERVICES

VISUALIZING LANDSCAPE SYSTEM RELATIONSHIPS (11.07.2022, Juanjo Galan Vivas, Polytechnic University of Valencia)

STUDIO COURSE: 'LANDSCAPES OF PRODUCTION' (Aalto University, 2018)

Student: Rosaliina Luminiitty Teacher: Juanjo Galán)

Country / City Finland, Helsinki

University / School Aalto University, School of Arts, Design and Architecture

Academic year 2018–2019

Title of the project Peri-Urban Collage: Agroforestry in the Metropolitan Area of Helsinki

Authors Rosaliina Luminiitty

STAFF TRAINING SEMINAR
TELOS project
(Rome, Italy, 11-13 July 2022)

VISUALIZING LANDSCAPE SYSTEM RELATIONSHIPS (11.07.2022, Juanjo Galan Vivas, Polytechnic University of Valencia)

STUDIO COURSE: 'LANDSCAPES OF PRODUCTION' (Aalto University, 2018)

Student: Rosaliina Luminiitty Teacher: Juanjo Galán)

Forestry Now Production Seller roundwood consumption Finland 25% of forests Energy production Forest Industry Forest Industry wood-product industries 30 M m³ of forests 12% restrictions / forestry not allowed Biodiversity Uusima Forestry in the peri-urban. The management of multiple-use forest aim for economically profitable wood production while securing ecosystem services, forest health and well-being. 1) populaton density [4 00-1500 people/km²] 2) land-use (typically non-urban) Peri-urban areas are under urban infuence and show rural character due to the Peri-Urban BIODIVERSITY SUPPORTING®ULATING SERVICES Climate Change area. The outline factors that the forestry is based on are 1) felling of timber 2) economy Succession Forest succession is a cyclical process Ecosystem Services C T.

Agriculture Now

Finland

Uusima

Peri-Urban

import 50M kg

+ available land

WEAKNESSES

- unpredictability

- economic situation

- pests and diseaces

STAFF TRAINING SEMINAR TELOS project (Rome, Italy, 11-13 July 2022)

VISUALIZING LANDSCAPE SYSTEM RELATIONSHIPS (11.07.2022, Juanjo Galan Vivas, Polytechnic University of Valencia)

STUDIO COURSE: 'LANDSCAPES OF PRODUCTION' (Aalto University, 2018)

Student: Rosaliina Luminiitty Teacher: Juanjo Galán)

Speculation - 2100

Drivers for Change

technological drivers

automatization & robotics artificial LED cultivation

better cultivation conditions climate change

demand for recreation spaces urbanisation

Transitions in Change

Criteria

- . climate change requires changes in the food production sector.
- · urbanisation continues due to the need for sustainable solutions.
- rurbanisation = a process where the physical environment loses qualities that were traditionally associated with urban or rural
- technology will develop rapidly: enables LED indoor cultivation, carbon free energy production, robotisation, new materials to

Scenario C - selected scenario

Risto - The Robot & Climate Saver

diverse species of plants

Scenario A

Implementation - Future

Past (1954)

Kerava river valley - historically significant and valuable landscape.

Scenario A Risto - The Farmer

Risto - The LED farmer & Experience producer

STAFF TRAINING SEMINAR TELOS project (Rome, Italy, 11-13 July 2022)